Electrospun Nanofibers in Tissue Engineering
نویسندگان
چکیده
The field of tissue engineering and regenerative medicine is a fast growing scientific field. Many diseases and injuries that result in the loss of organ or tissue functions currently lack treatments which restore those functions and the patient to a desirable quality of life. Many current treatments could greatly benefit from incorporation of bioengineered organs and tissues, and investigation into this field shows great promise for modern medicine. Tissue engineering hypothesizes that by incorporating appropriate cells in the context of a threedimensional scaffold and then implanting the cell-scaffold construct into an injury or defect, that the cells and scaffold will provide both active and passive healing properties. Various scaffolding systems exist and are generally made from natural and/or synthetic polymers. Scaffolds can be fabricated by many methods including solvent casting and particulate leaching, melt molding, rapid prototyping, phase separation, and many others (Yang et al., 2001). Of particular interest to the subject of nanofibers is electrospinning, which has seen widespread use in the field of tissue engineering due to the ease of use, scalability, adaptability, and capacity to form fibers on both the micro and nano scale (Sill & von Recum, 2008). In constructing scaffolds for tissue engineering it is ideal to provide cells with an environment which closely resembles their native extracellular matrix (ECM). The spinning of nanofibers allows for a connected and porous scaffold which can mimic the ECM of many tissue types structurally, chemically, and mechanically. The ECM is a largely proteinaceous cellular environment that varies greatly between tissue types. In most tissue types the ECM is composed of a highly interconnected network of proteins such as collagen and elastin, and proteoglycans such as perlecan (Lodish et al., 2008). These molecules link together to form a functional environment in which cells live, move, receive and transmit signals, and which provides structural support to the cells, tissue, and organ as a whole. The composition of molecules in the ECM has a strong influence on the structural properties of the tissue which it helps compose. For example, in tissues which must stretch and bend, such as the muscle of the heart, elastin is a necessary ECM component which lends elasticity to the tissue when found in sufficient quantities (Lodish et al., 2008). Similar examples may be found in all tissue types, exemplifying the common theme of structure supplying function found throughout biology. The ECM is approximately nano scale and fibrous, though the fiber orientation depends on the tissue type. For example, dermis has randomly oriented fibers so as to provide structural support when stretched in different directions, while ligaments have a highly directional ECM so as to provide support in the direction of stress.
منابع مشابه
Electrospinning Nanofibers Gelatin scaffolds: Nanoanalysis of properties and optimizing the process for tissue engineering functional
Electrospinning has been recognized as an efficient technique for the fabrication of polymernanofibers. Recently, various polymers have successfully been electrospun into ultrafine fibers.Electrospinning is an extremely promising method for the preparation of tissue engineering scaffolds.In this study, nanofibers gelatin was electrospun at 20% v/v optimized content. To produce...
متن کاملGenipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold
Objective(s): To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO) nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers. Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nano...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملThe effect of electrospun poly(lactic acid) and nanohydroxyapatite nanofibers’ diameter on proliferation and differentiation of mesenchymal stem cells
Objective(s): Electrospun nanofibrous mats of poly(lactic acid) (PLA) and nanohydroxyapatite (nano-HA) were prepared and proliferation and differentiation of mesenchymal stem cells on the prepared nanofibers were investigated in this study. Materials and Methods: PLA/nano-HA nanofibers were prepared by electrospinning. The effects of process parameters, such as nano-HA concentration, distance, ...
متن کامل3D cold-plate electrospun silk fibroin nanofibers
Cold-plate electrospun silk nanofibers look to be a promising scaffold for tissue engineering due to their ability to be controlled in the 3D nanofibrous form. They can be manipulated to resemble the dermis and other structures compatible with tissue repair.
متن کامل